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Reconstruction of magnetohydro-
dynamics (MHD) equilibria in to-
kamaks and other magnetic fusion 
confinement devices is an impor-

tant tool in diagnosing the plasma behavior. 
Axisymmetric MHD equilibria are solutions 
of the Grad-Shafranov (GS) equation (see  
Fig. 1). Reconstruction proceeds as a nonlin-
ear least squares problem, i.e., minimizing 
 
 

with respect to GS parameters  where 
and are the measured and theo-

retical poloidal magnetic field, as in Fig. 1. 
Theoretical values come from the GS equa-
tion with parameterizing the toroidal field 
and parameterizing the pressure. Also, 
is the inverse of the covariance matrix of the 
measured data, assumed to be gaussian. Off-
diagonal terms in the matrix D are related to 
data correlations, and our investigations show 
that in tokamaks these correlations can  

seriously influence the reconstruction, 
compared to the commonly used approach 
which keeps only the diagonal terms. This is 
particularly true when the correlations have a 
power-law behavior in distance. 

The Bayesian interpretation is that 
the posterior distribution of 
is related to the likelihood of the data                

 A uniform prior 

is assumed. The maximum of  
is found by maximizing the likelihood

, or minimizing . 

Because of the nonlinear nature of the 
field measurements from GS, we 
must minimize  by numerical means 
such as simulated annealing rather than 
by simpler approaches such as singular 
value decomposition (SVD). For low noise, 
the posterior  is gaussian in 

 and is characterized by the posterior 
covariance matrix. (In this limit, the estimate 
is obtained nonlinearly but the posterior 
covariance matrix is found linearly, the 
extended Kalman filter.) For higher noise 
levels, however, the posterior is not  
gaussian and its covariance matrix must  
be determined numerically.

The reconstruction has a number of near-
degeneracies if only the edge poloidal 
magnetic field is measured. Terms of the form 

 occur in GS and for large n are 
approximated by , where rp is the 
radius of the plasma center (Fig. 1), because 
for large n the current density is peaked near 
the center. This is a near degeneracy between 
pressure and toroidal field. Since the typical 
tokamak current density profile is peaked, 
this near-degeneracy can be important. This 
effect is quantified in Fig. 2, in which we 
have solved GS with n = 1, 2, 3, 4. We have 
then plotted the  contours [contours 
of the posterior distribution function 

] for each n. It is clear 
that as n increases, the stiffness increases, 
with f1 aligning along  In 
the linear regime, this stiffness is expressed 
as the ratio of the eigenvalues of the posterior 
covariance matrix. For weak nonlinearity, the 
inverse of the Hessian of lnf1 can be used.

Figure 1— 
Flux surfaces for a 
solution of the GS 
equation, showing edge 
poloidal magnetic field 
measurements as well 
as internal pressure 
measurements. 
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It is possible to break this degeneracy by 
making direct pressure measurements in the 
plasma interior (by Thomson scattering). 
This is indicated in Fig. 1. Since the pressure 
gradient occurs in GS, pressure differences 
are required. Including these pressure 
differences into  leads to results shown 
in Fig. 3. We plot the p = 1/2 curve, i.e., the 
contour of  within which half the 
probability lies. For a single pair of pressure 
measurements this curve collapses in the 
βn (pressure) direction. For six pressure 
measurements the curve narrows slightly 
more. Interestingly, the accuracy in the αn  
parameter is increased by the first pair of 
pressure measurements, but hardly at all by 
the subsequent measurements.

Modifications based on these quantitative 
considerations are being incorporated 
into equilibrium reconstruction codes and 
experimental studies are being initiated to 
determine correlations of external magnetic 
measurements.

T

Figure 2— 
Contours of , i.e., 
contours of the posterior 
distribution function, 
with exponents n = 1, 
2, 3, 4.

Figure 3— 
Probability p = 1/2 
curves in  
with no internal 
pressure measurement 
(red), with one pressure 
difference (blue), and 
with five pressure 
differences (green).
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